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Main Objective

Specialized, power-efficient hardware [2,7] Efficient cooling technologies [7]

Low-power devices and components Air/liquid cooling or mixed cooling
t Hardware Level J

1

Objective
Match increasing computing
demands with reduced power
consumption

l Software Level

Enhance resources management and system
scheduling [7]
Improving energy-awareness of workflow
management systems (WMSs)



Scientific Workflows

ExaFEL / 3D Electron Denmty

[ X-Ray Diffraction ,’ N-D Intensity Map —-[

-

A"
Y

-,

By AR . L
'.‘_ b 1S ‘#"'... .
Orientation J\ Dok 4
Firoiial & S

'y !
W Intensity Calculation

b

Ty
-

'

. . ; g A
[ Orientation T'-h X-Ray Diffraction J--:[ Nuclear Dynamics SRy R

f

Cosmoscout-VR Csp-

Ground
Truth Input

o

8 Rayleigh- —O~_
_'O Anisotropy =0 .
. { }-"

Generated Mie-
Input Scattering

Rayleigh-
Scattering

L

Mie- Atmosphere
Anisotropy —0O
:.O

Phase concurrency' three

Halo Gnunter

Hod Gounter

L ﬁ -

I W

BCM component
concurrency: two

EM

HBF

DayDream: Executing Dynamic Scientific Workflows on Serverless

Platforms with Hot Starts - SC '22 [5]

1000Genome

i

CNC’"() (E]ERE

SRAsearch

Phase 3 L AL
has 1 task (R)
with 2 components

Apache
Airflow

Epigenomics

A: Individual (1252)

B: Individual-Merge (1)

C: Sifting (1)

D: Mutation-Overlap (626)
E: Frequency (626)

O: FasterQ-Dump (200)
P: Bowtie2-Build (1)

Q: Bowtie2 (200)

R: Mergel (2)

S: Merge2 (1)

argo

F: FastQSplit (2)

G: Filtercontams (500)
H: Sol2sanger (500)

I: Fast2bfqg (500)

J: Map (500)

K: Mapmergel (2)

L: Mapmerge2 (1)

M: Chr21 (1)

N: Pileup (1)

Mashup: making serverless computing useful
for HPC workflows via hybrid execution -

PPoPP 22 [6]

/¢

pagasvs



A New Trend

Traditional deployment Emerging trend
Monolithic applications running on on-premises  Serverless computing can alleviate
clusters and laaS these challenges
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Resources under-utilization, over-provisioning, Data locality, cold start, and resource
and high expenses [3-5] volatility [3-5]

*DayDream: Executing Dynamic Scientific Workflows on Serverless Platforms with Hot Starts - SC 22 [5]



Workflows Scheduling

The scheduling problem

e Distributing computational resources Minimize energy consumption
among different tasks accodring to — Minimize workflow makespan
specific constraints Maximize resources utilization

e Balancing energy efficiency with other
objectives presents a challenge [4]

Solving the scheduling problem

e Workflows scheduling in HPC belongs to the NP-hard problem class
e Usually, we see in the literature heuristics with manually-tuned parameters

In recent years, the application of ML has significantly increased in task scheduling [1]



Machine Learning and Sche

Advantages of ML

duling

e ML techniques can handle complex scenarios with multiple states of the

computing environment (high heterogeneity)
e Have the ability to self-adapt and self-learn

Some studies applied RL and DRL for task scheduling [1,9], w

nile others

utilized regression methods to create new policies [

Only a small number of recent research papers [9] have implemented
in the context of serverless computing

]

such techniques



Bringing Everything Together

Energy-aware
scheduling

Introduce energy-saving
innovations at the software
level, focusing on scheduling

Serverless scientific
workflows

Make serverless more
attractive for scientific
workflows

Machine Learning
techniques

Develop models to address
multiple complex challenges
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